Course Code: 23EC0413

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

Siddharth Nagar, Narayanavanam Road – 517583

QUESTION BANK (DESCRIPTIVE)

Subject with Code: Antennas and Wave propagation (23EC0413) Course & Branch: B.Tech. – ECE

Year &Sem: III-B.Tech & I-Sem Regulation: R23

<u>UNIT-I</u> ANTENNA BASICS & DIPOLE ANTENNAS

				T
	a)	Define antenna.	[L1][CO1]	[2M]
	b)	Define Bandwidth of antenna.	[L1][CO1]	[2M]
1	c)	Define Beam Area.	[L1][CO1]	[2M]
	d)	Define Effective Height and Effective length of antenna.	[L1][CO1]	[2M]
	e)	Define Resolution of antenna.	[L1][CO1]	[2M]
2	a)	Explain the radiation mechanism in single wire, two wire, and dipoles.	[L2][CO1]	[6M]
	b)	Define the radiation pattern of an antenna and its types with neat sketch.	[L2][CO1]	[4M]
3	a)	Explain the following terms. i). Main lobe and side lobe ii). Beam width	[L2][CO1]	[6M]
	b)	Explain the following terms. i). Beam area ii). Effective height	[L2][CO1]	[4M]
4		Explain the following terms. i). Radiation intensity ii). Beam Efficiency iii). Directivity	[L2][CO1]	[10M]
5	a)	Define the following parameters. i). Antenna gain ii). Aperture Efficiency	[L1][CO1]	[4M]
5	b)	A dipole having a length of 3 cm is operated at 1 GHz. The efficiency factor K=0.6. Calculate antenna gain and effective aperture.	[L3][CO1]	[6M]
6	a)	State the following antenna theorems. i). Reciprocity Theorem ii). Helmholtz theorem.	[L1][CO1]	[6M]
	b)	Write basic Maxwell's equations with other relevant relations.	[L1][CO1]	[4M]
	a)	Derive and explain the expression for retarded potential.	[L3][CO1]	[5M]
7	b)	An antenna receives a maximum power of $2\mu W$ from a radio station. Calculate the maximum effective area if the antenna is located in the far field station where $E=50mV/m$.	[L3][CO1]	[5M]
8		Derive the expression for radiated fields from the small electric dipole.	[L3][CO1]	[10M]
9		Deduce the expression for field components of Quarter wave monopole antenna.	[L3][CO1]	[10M]
10		Derive the radiation parameters of Half wave dipole using field components.	[L3][CO1]	[10M]
	a)	An antenna has a radiation resistance of 72Ω , and a loss resistance is 8Ω if the power gain of 16. Calculate the directivity of the antenna and the length of half wave dipole at 30MHz.	[L2][CO1]	[5M]
11	b)	Explain the current distributions on thin linear center-fed antennas of different lengths.	[L1][CO1]	[5M]

Course Code: 23EC0413 **R23**

<u>UNIT –II</u> <u>HF, VHF AND UHF ANTENNAS</u>

1	a)	List few directional finding antennas.	[L1][CO2]	[2M]
	b)	What are parasitic elements?	[L1][CO2]	[2M]
	c)	Write the expression for directivity of small loop and large loop antennas.	[L1][CO2]	[2M]
	d)	Define Pitch angle.	[L1][CO2]	[2M]
	e)	State Fermat's Principe.	[L1][CO2]	[2M]
2		Derive the field components of small loop antenna.	[L3][CO2]	[10M]
3	a)	Write the comparison of far fields of small loop and short dipole.	[L2][CO2]	[4M]
	b)	Derive the radiation resistance for small loop and large loop.	[L3][CO2]	[6M]
4		Explain about construction and operation of Yagi-Uda antenna with neat	[L2][CO2]	[10M]
		sketch.		
5	a)	Design Yagi-Uda antenna of six elements to provide a gain of 12dB if the	[L3][CO2]	[5M]
		operating frequency is 200 MHz.		
	b)	List the advantages, disadvantages and applications of Yagi-Uda antenna	[L1][CO2]	[5M]
6	a)	Discuss the folded dipole antenna and its input impedance.	[L2][CO2]	[6M]
	b)	Derive the input impedance of a folded dipole antenna formed by three	[L3][CO2]	[4M]
		parallel half-wave elements.		
7		Discuss the design considerations of log periodic antenna.	[L2][CO2]	[10M]
8	a)	Explain about the construction and operation of helical antenna.	[L2][CO2]	[5M]
	b)	Explain design considerations of Monofilar Axial-mode Helical antenna.	[L2][CO2]	[5M]
9	a)	Discuss about the helical antenna of normal mode and its radiation	[L2][CO2]	[6M]
		pattern.		
	b)	Calculate the directivity of 20 turn helix with $\alpha = 12^{0}$ and circumference	[L3][CO2]	[4M]
		equals to one wavelength.		
10	a)	Discuss about the helical antenna of axial mode and its radiation pattern.	[L2][CO2]	[5M]
	b)	Explain about the horn antenna types & its characteristics.	[L2][CO2]	[5M]
11	a)	Discuss the design considerations of pyramidal horn antenna.	[L2][CO2]	[6M]
	b)	Calculate the directivity of pyramidal horn antenna with an aperture.	[L3][CO2]	[4M]
		If size 12x12cm operating with 3.2cm wavelength.		
L				I .

Course Code: 23EC0413 **R23**

UNIT –III MICROWAVE ANTENNAS

1	a)	Define rectangular patch antenna?	[L1][CO3]	[2M]
	b)	List two advantages of microstrip antennas.	[L1][CO3]	[2M]
	c)	Define corner reflector antenna?	[L1][CO3]	[2M]
	d)	Name a feed method for parabolic reflectors.	[L1][CO3]	[2M]
	e)	List types of lens antennas?	[L1][CO3]	[2M]
2	a)	Explain about micro strip antennas and its types with neat diagrams.	[L2][CO3]	[6M]
	b)	Give the advantages and limitations of micro strip antennas.	[L1][CO3]	[4M]
3	a)	Discuss the construction of rectangular patch antenna	[L2][CO3]	[7M]
	b)	What are the applications of Microstrip antenna?	[L1][CO3]	[3M]
4		Discuss the characteristics of Microstrip Antenna.	[L2][CO3]	[10M]
5	a)	Design a rectangular microstrip patch antenna to resonate at 2.4 GHz using	[L4][CO3]	[5M]
		substrate ($\varepsilon_n \approx 2.2$) of height 1.6 mm.		
	b)	Explain the types of reflector antennas.	[L2][CO3]	[5M]
6	a)	Draw and explain the principle of parabolic reflector.	[L3][CO3]	[5M]
	b)	Explain the principle of operation of a flat (plane) sheet reflector antenna.	[L2][CO3]	[5M]
7	a)	A parabolic dish with D = 1.2 m, η = 65% operates at f = 10 GHz.	[L3][CO3]	[5M]
		i). Calculate the gain in dBi.		
		ii). Estimate the HPBW (degrees) and effective aperture Ae.		
	b)	Describe the differences between a flat sheet reflector and a corner	[L4][CO3]	[5M]
		reflector.		
8	a)	Explain the different feed methods to parabolic reflectors.	[L2]CO3]	[6M]
	b)	A parabolic dish provides a power gain of 50 dB at 10 GHz with 70%	[L3][CO3]	[4M]
		efficiency. Find out i) HPBW ii) BWFN		
9	a)	Explain the design and operation of a Cassegrain reflector antenna.	[L2][CO3]	[7M]
	b)	Write the advantages of using the Cassegrain feed method.	[L1][CO3]	[3M]
10	a)	Explain the Geometry of the non metallic dielectric lens antenna.	[L2][CO3]	[5M]
	b)	Describe zoning and manufacturing tolerances in lens design.	[L4][CO3]	[5M]
11	a)	Describe the characteristic of lens antenna with tolerance.	[L2][CO3]	[6M]
	b)	List the advantages and applications of the lens antenna.	[L1][CO3]	[4M]

Course Code: 23EC0413 **R23**

UNIT –IV <u>ANTENNA ARRAYS & ANTENNA MEASUREMENTS</u>

1	a)	Define an antenna array.	[L1][CO4]	[2M]
1	b)	Define a broadside array?	[L1][CO4]	[2M]
	c)	What is pattern multiplication?	[L1][CO4]	[2M]
	d)	Identify one source of error in antenna measurements.	[L1][CO5]	[2M]
	e)	What is Antenna under Test (AUT)?	[L2][CO5]	[2M]
2	a)	What is antenna array and explain its types?	[L2][CO4]	[8M]
	b)	Define the point sources.	[L1][CO4]	[2M]
3	a)	What are the different cases of arrays of 2-point sources?	[L1][CO4]	[3M]
	b)	Derive the expression for far field pattern of an array of 2 isotropic	[L4][CO4]	[7M]
	, , ,	point sources at equal amplitude & same phase.	[][]	[]
4		Derive the expression for far field pattern of an array of two isotropic	[L4][CO4]	[10M]
		point sources at equal amplitude & opposite phase.		
5	a)	Explain pattern multiplication with any one case	[L2][CO4]	[5M]
	b)	Explain n- element uniform linear array	[L2][CO4]	[5M]
6	a)	What is Broad side array and its radiation pattern.	[L1][CO4]	[5M]
	b)	What is End fire array and its radiation pattern.	[L1][CO4]	[5M]
7	a)	Explain End fire array with increase directivity and derive the directivity	[L2][CO4]	[7M]
		equation.		
	b)	Explain the concept of non uniform amplitude distribution of BSA?	[L2][CO4]	[3M]
8	a)	Find the minimum spacing between the elements in a broad side array	[L3][CO4]	[5M]
		of 10 isotropic radiators to have directivity of 7db.		
	b)	A broad side array operating at 10cm wavelength consists of 4 half wave	[L3][CO4]	[5M]
		dipole spaced 50 cm each element carries radio frequency current in		
		the same phase and magnitude 0.25A. Calculate the radiated power, half power		
0	-)	beam width of major lobe	[T 2][CO5]	[[[N / [1]
9	a) b)	Explain sources of Error in Antenna measurement.	[L2][CO5]	[5M]
10	D)	Explain the measurement of directivity. Explain the radiation pattern measurement with fundamental procedure,	[L2][CO5]	[5M]
10		arrangements and distance requirement.	[L2][CO5]	[10M]
11	a)	Explain Gain measurement by direct comparison method.	[L2][CO5]	[5M]
11	b)	Explain the gain measurement using absolute method.	[L2][CO5]	[5M]
	U)	Explain the gain measurement using absolute method.		
<u> </u>	1	l	1	j.

Course Code: 23EC0413

UNIT –V WAVE PROPAGATION

1	a)	What are the modes of propagation?	[L1] [CO6]	[2M]
	b)	Define skip distance.	[L1] [CO6]	[2M]
	<u>c)</u>	Mention different types of fading.	[L1] [CO6]	[2M]
	<u>d)</u>	Define wave tilt.	[L1] [CO6]	[2M]
	e)	Define optimum working frequency (OF).	[L1] [CO6]	[2M]
2	a)	Discuss about refraction, reflection and different modes of EM waves.	[L2] [CO6]	[6M]
	b)	Discuss about Ray path with neat sketch.	[L2] [CO6]	[4M]
3	a)	Explain the Structure of Ground wave propagation with neat sketch.	[L2] [CO6]	[5M]
	b)	Discuss Reflection and Refraction of space wave propagation.	[L2] [CO6]	[5M]
4	a)	Explain the concept in brief of Super refraction and M-curves.	[L2] [CO6]	[4M]
	b)	Explain about the duct propagation and Scattering phenomenon?	[L2] [CO6]	[6M]
5	a)	Discuss the effects of tropospheric propagation, fading and patch losses?	[L2] [CO6]	[6M]
	b)	Determine the maximum usable frequency for a critical frequency of	[L3] [CO6]	[4M]
		20 MHz and an angle of incidence of 350.		
6		Draw and explain the structure of Ionosphere with its typical electron	[L3] [CO6]	[10M]
		density variation characteristics.	FT 41 FG 6 (1	5403.53
7	,	Discuss Reflection and Refraction of sky wave propagation by Ionosphere.	[L2] [CO6]	[10M]
8	<u>a)</u>	Explain critical frequency and its expression.	[L2] [CO6]	[6M]
	b)	Explain Maximum usable frequency with its expression.	[L2] [CO6]	[4M]
9	a)	Write a short note on lowest usable frequency (LUF) and working frequency	[L2] [CO6]	[5M]
	b)	Explain Virtual height and its significance.	[L2] [CO6]	[5M]
10	a)	Explain Skip distance and derive its expression.	[L2] [CO6]	[6M]
	b)	Explain the relation between MUF and skip distance.	[L5] [CO6]	[4M]
11	a)	Give brief note on Multi hop propagation and energy loss in Ionosphere.	[L2] [CO6]	[6M]
	b)	For a flat earth assume that at 400 km reflection takes place. The	[L3] [CO6]	[4M]
		maximum density of ionosphere corresponds to a refractive index		
		of 0.9 at 10 MHz. Calculate range for which maximum usable frequency is 10		
		MHz.		